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Abstract 
We propose a novel technique to compensate for variations in 

face images due to changes in the illumination conditions. Other 
than color of the faces, shadows and specular reflections on the 
faces also change with respect to lighting environment. These 
variations result in false recognitions even in the best face 
recognition algorithms. We tackle this problem by processing the 
faces using a color constancy model specific to face images, which 
we named face color constancy. 

The face color constancy algorithm is trained with face 
images in different lighting environments. The color changes 
observed are used to learn the color mapping from one lighting 
environment to the other. These mappings are represented in a low 
dimensional subspace to obtain basis vector fields. Using these 
basis vector fields we can model the nonlinear color changes to 
transform a new probe face to a reference face in the gallery. 
Using face color constancy preprocessing, we show that for fixed 
pose and expression we require a single training image per subject 
to perform accurate face recognition. 

Introduction  
The appearance of a face with fixed expression and pose is 

determined by the illumination conditions. Here we define 
illumination conditions as including all those parameters which 
affect the final RGB values recorded by the camera given that pose 
and expression are fixed. These parameters are determined by the 
intensity of the light, frequency of the light, position of the light 
with respect to the face, shadows over the face, reflectance of the 
regions in the neighborhood of the face, and camera 
characteristics. The appearance of the same face with fixed pose 
and expression under different illumination conditions can change 
significantly. The accuracy of a face recognition algorithm is 
going to be severely affected due to these large variations. In 
general, we know that appearance-based face recognition methods 
like Eigenfaces [2] need a number of training images for each 
subject in order to cope with illumination variations. We aim to 
deal with these variations by automatically transforming the faces 
images towards a reference lighting condition. When the pose and 
expression are fixed we require only a single training image per 
subject for accurate face recognition. 

We test our approach on PIE database [4] since the 
illumination variations are more representative of the real world 
situations than other standard face databases currently available. 
The illumination variations in PIE database were generated due to 
presence or absence of ambient light combined with changing 
position of a point source with respect to the face. The changes in 
colors, shadows and specular reflections on faces due to the 
changing illuminations are highly complex. Also we do not have 

any physical parameters of the lighting, surface reflectances or 
camera sensitivities. Hence our face color constancy (FCC) 
approach needs to be completely unsupervised. We realize this by 
using the color changes observed on a face for different 
illuminations to drive the model. By training on few faces of 
different ethnicities, our model is able to generalize the color 
mapping for any unseen ethnicity from the PIE database. After the 
FCC algorithm is trained we obtain basis vector fields, which can 
be used to explain the observed color changes. Using these basis 
vectors we can transform a face image towards a reference 
illumination condition. In a face recognition system with a single 
image per subject, the basis vectors can be used to transform a 
probe face towards its reference in the gallery. 

Previous work 
Many interesting approaches have been used to address the 

problem of illumination invariant face recognition. Most of the 
work has been done in building models that try to explicitly model 
varying illumination. The human face is treated as a Lambertian 
surface and mathematical models are created which can describe 
all images it can produce under all possible illuminations. In [1], 
using spherical harmonics it has been shown that the set of images 
of a convex Lambertian object obtained under a wide variety of 
lighting conditions can be approximated accurately by a 9 
dimensional linear subspace. A shape from shading method was 
attempted in [9], but suffered from drawbacks of shape form 
shading. Another well known model that is widely used is the 
illumination cone model [3]. It was also shown that illumination 
cones of human faces can be approximated well by low-
dimensional linear subspaces [8]. These appearance-based methods 
need training images of subjects under a number of different 
illumination conditions. This drawback is overcome in [5] and [6] 
by reconstructing 3D face information for each subject in the 
training set. 

Color constancy algorithms are very appealing to use for 
compensating face image variations taken under different 
illumination conditions. A common approach in the color 
constancy literature is to use linear models of reflectance and 
illuminant spectra to estimate surface reflectances and various 
physical parameters. Most of the methods make strong 
assumptions about the distribution of reflectances. Gray world 
algorithms [11] assume that the average reflectance of all the 
surfaces in a scene is gray. While the white world algorithms [12] 
assume that the brightest pixel corresponds to a scene point with 
maximal reflectance. The assumptions make these algorithms 
impractical for use on real world images. Some of the algorithms 
require prior knowledge of the illuminant spectra, surface 
reflectances and camera sensitivities during training to achieve 
color constancy [10, 15]. There exist very few color constancy 



 

 

algorithms [13, 14] that work on real images, but only for limited 
conditions. Hence for the purpose of FCC on real world images we 
develop a data driven approach that can be applied directly to real 
world images. Our approach is influenced by the color eigenflows 
method [7], which was used to “flow” an image to a target image 
using the eigenflows. Their method was trained on a wide range of 
colors while our method is specific to faces hence more 
appropriate for FCC. 

Our approach of using color constancy to achieve 
illumination invariant face recognition is unique in many ways 
compared to previous illumination invariant face recognition 
methods. We can deal with real world illumination environments 
where many light sources are active simultaneously, the position of 
the light sources are changing and the neighborhood scene is 
changing. Our model is also capable of FCC when camera 
processing such as auto-gain and camera color balancing functions 
are active. Given a few faces under different illumination 
environments in these real word situations, our model can learn the 
basis vectors needed to compensate for these variations in any new 
face image. Our model can also compensate for strong shadows 
and specular reflections to some extent. 

Learning the joint color changes 
We perform training on face images from the PIE database 

[4] to learn the color changes on faces for different lighting 
conditions. We use only frontal faces with normal expression. The 
database has two sets of illumination variations. In set 1 the 
ambient lights are on and the point source is changing its state and 
position. In set 2 the ambient lights are off and again the point 
source is changing its state and position. We use set 1 to learn the 
joint color changes. 

Let the RGB color space be defined as, C = {(r, g, b)T ∈ 3ℜ  : 
0 ≤ r ≤ 255, 0 ≤ g ≤ 255, 0 ≤ b ≤ 255}. This space defines all the 
possible color vectors observable in images. The color vector of an 
image pixel p is denoted as c(p) ∈ C. Let 1 ≤ i ≤ N, where N is the 
number of subjects and let 1 ≤ j ≤ M, where M is the number of 
illumination conditions under which each subject’s image is taken. 
Also let 1 ≤ k ≤ P, where P is the number of pixels in each face 
image. The mapping of colors under different illumination 
conditions is represented by difference of two corresponding 
pixels: 

0 0d( , ) c( ) c( )k k k k
i ij i ijI I I I= −  (1) 

This difference vector tells us how a particular pixel’s value 
changed from illumination condition of Ii0 to illumination 
condition of Iij. This difference vector is computed for each of the 
P pair of pixels to obtain a vector field that is defined at all points 
in C for which there are colors in image Iij. The vector field is 
constructed by placing each vector difference at the point c( k

ijI ) in 
the color space C. 

The vector field Φ’ over C is defined as: 

0'( ( )) ( , ), 1k k k
ij i ijc I d I I k PΦ = ≤ ≤  (2) 

This vector field is only defined at particular color points in C that 
happen to be in image k

ijI , hence Φ’ is called a partially observed 
color flow. We wish to obtain a full color flow from the partially 
observed color flow. A simple approach to obtain the full color 
flow is to follow an interpolation scheme as proposed in [7]. The 

color flow at a color point (r, g, b)T is obtained by a weighted 
proximity based average of nearby observed color flow vectors. 
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In [7] the full color flow is defined at every point in C, whereas 
our full color flow is defined only in a subset of C. The points 
where our Φ is defined depends on the colors present in Iij. The 
variance term σ2 controls the mixing of the observed flows to form 
the interpolated flow vectors. From our experiments we found that 
a variance of 16 gave us good results. Visualization of the color 
flow vector field for the face pair (I10, I12) is shown in figure 1. 

The full color flows ( ( ))k
ijc IΦ are computed for all the 

training images; 1 ≤ i ≤ N, 1 ≤ j ≤ M. We used N=34 and M=23; 
i.e. we used images of 34 subjects taken under 23 different 
illumination conditions to obtain 782 color flows. The training 
images are of dimension 190 x 200; i.e. P = 38000. The training 
face images were created form the PIE database by interactively 
cropping and masking the faces from the images. 

The possible changes of a pixel’s color on the face surface 
due to changes in illumination conditions are compact. While in 
principle its possible for a change in illumination condition to map 
any color from a Lambertian surface to any other color 
independently of all other colors, we know from experience that 
many such joint maps are not observed in real world situations. 
Hence there is significant structure in the space of color flows. The 
image pair shown in figure 1 has a nonlinear variation; some 
regions of the face become more bright than other regions due to 
position of the point source. As can be seen from the visualization, 
this kind of nonlinear variations can be captured by modeling the 
space of color flows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Visualization of the full color flow vector field for the image pair (I10, 
I12). 



 

 

Given a large number of color flows, we wish to model their 
distribution. We chose to use Principal Component Analysis 
(PCA) due to the following reasons, which were originally given 
in [7]. The flows are well represented by a small number of 
principle components and finding the optimal description of a 
difference image in terms of color flows is computationally 
efficient using this representation. 

There are ~16 million points in the color space C, hence to 
represent the color flows we quantize it at Q distinct points. 
Therefore the color flow Φ can be represented as a collection of 
3Q coordinates. We chose Q = 4096 distinct and equally spaced 
points in the color space for our experiments. Hence the full color 
flow is a vector of 3 * 4096 components. Using a higher value of 
Q would give us a more accurate color flow field, but due to 
computational speed and memory limitations we settle for Q=163. 
We compute principal components of the color flow covariance 
matrix. These principal components were named as eigenflows in 
[7]. Figure 2 shows the eigenvectors associated with the first 50 
eigenflows. As expected the curve drops off rapidly indicating that 
most of the variance in the color flow distribution is represented 
by the first few eigenflows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Magnitude of the eigenvalues vs. eigenvalue index. 

Face color constancy from basis vectors 
Using the eigenflows, we can transform a face image taken 

under arbitrary illumination conditions towards its reference 
illumination condition. During the training procedure we used the 
face image taken with ambient light on and all point sources off as 
the reference, hence using the eigenflows we can obtain the face 
closest to that illumination condition given a face taken under an 
arbitrary illumination condition. 

Let Itest be a face under arbitrary illumination condition and 
let Itest 0 be its reference. We compute the difference image as 

0test testD I I= −  (4) 

The difference image basis vectors for the test image and a set of E 
eigenflows Ψi, 1 ≤ i ≤ E, can be represented as 

( )i test iD I= Ψ  (5) 

Here the operator ( )testI ⋅ takes the pixel values at the location [x, 
y] and generates a difference image basis vector by placing at each 

[x, y] the closest eigenflow. The closest eigenflow is determined 
based on the distance in the color space from the color vector at [x, 
y]. The transformed image is obtained as 

1

E

T test i i
i

I I Dγ
=

= +∑  (6) 

where γi are scalar multipliers. We can directly solve for γi’s by 
solving the system 

†
i iD Dγ =  (7) 

Here D is the difference image defined in eq. (4), and †
iD is the 

pseudo-inverse of the difference image basis vectors defined in eq. 
(5). 

We applied this procedure on 10 faces of arbitrary 
illumination conditions and transformed them to their reference 
illumination condition. The mean RMS error of the original faces 
with respect to the reference face was 70.51. We then computed 
the mean RMS errors of the transformed faces obtained using 
different number of eigenflows from the reference face (see figure 
3). Using only 20 eigenflows the mean RMS error reduced to 7.65.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Mean RMS error using different number of eigenflows. Mean RMS 
error of the original images was 70.51. 

Figure 4 shows a few probe faces transformed towards the 
reference illumination condition. Notice that the effects of 
shadows and specular reflections are reduced and the color of the 
face is consistent with respect to the reference face.  The subject 
shown in figure 4 was not used during training to compute the 
eigenflows. This shows that our FCC algorithm is capable of 
generalizing color constancy for unseen faces. 

Face recognition using FCC 
We describe a procedure to perform face recognition based on 

the RMS error between the transformed probe face and the face in 
the gallery. Let N be the number of images in the gallery, each 
image corresponding to a different subject. Also let all the gallery 
images be taken under the same illumination condition. Then we 
transform a probe image taken under arbitrary illumination 
condition towards all the N gallery images. We obtain N RMS 
errors between the N transformed images and their corresponding 
references in the gallery.  Then the reference face in the gallery 
with minimum RMS error is considered to be the recognized face. 



 

 

Using this procedure we performed face recognition with 10 
images in the gallery, a single image used for each of the 10 
subjects. We used 50 probe images, 10 images each of 5 subjects, 
the 5 subjects in probe set are present in the gallery set. The 
recognition results obtained are shown in table 1. We compared 
the face recognition accuracy based on the RMS error for direct 
image matching without processing the probe images and after 
processing the probe images with FCC. 

 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
          

Figure 4. Probe faces (third row) are transformed (second row) to match the 
illumination condition of the reference face (first row). 

Comparisons of face recognition results: Table 1 
Face recognition 

approach 
% True positive % False positive 

Direct 20 80 

FCC 94 6.0 
 
We aim to transform the probe face to its correct reference 

face as well as possible, but at the same time we expect our FCC 
model is not endowed with enough capacity to transform a probe 
face to a wrong reference accurately. An ideal FCC model would 
thus transform a probe face to the correct reference with zero RMS 
error, and have large RMS errors for faces transformed with wrong 
references. From the face recognition results we see that our FCC 
model is not over-parameterized. 

Conclusions and future work 
The results show that our face color constancy (FCC) model 

is robust and can compensate for large illumination variations, 
shadows and specular reflections over faces. We also showed that 
our approach could have application in illumination invariant face 
recognition. The face recognition experiments presented are 
preliminary and much large experiments need to be performed to 
establish its utility for illumination invariant face recognition. We 
believe an important application of our FCC algorithm could be to 
use it in conjunction with other subspace based illumination 
invariant face recognition methods to make those methods more 
robust to illumination variations. 
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